The world is moving to a renewable energy economy.

Solar use is growing at exponential rates, and countries like the U.K., France, and India are planning to ban gas-powered vehicles in the coming years. Even the world’s largest auto market in China is under duress from mounting pollution, and the country has ambitious plans to build up world-class renewable capacity while ditching gas-powered vehicles.


As the world shifts to renewables, one question remains up in the air: how will we store all this energy?

Today’s infographic comes to us from VanadiumCorp and it highlights vanadium redox flow batteries (VRFBs) – which are a breakthrough that some experts say may be the future of grid-scale energy storage.

Vanadium: The Energy Storage Metal

Vanadium redox flow batteries (VRFBs) are fairly unique in the battery world.

They work by taking advantage of the natural properties of vanadium, a metal with four different oxidation states. But rather than using the metal in a solid state, vanadium electrolyte (a liquid solution) is used for both half-cells and the configuration is divided by a proton exchange membrane. Typically, massive tanks filled with vanadium electrolyte are connected, pumping the solution through at high volumes to charge or discharge.


This unique setup gives VRFBs a few interesting advantages for something like grid-scale energy storage:

  • - Extremely scalable
  • - Can rapidly release large amounts of energy
  • - Vanadium electrolyte is reusable, recyclable, and has a battery lifespan of 25+ years
  • - No cross-contamination of metals, since only one metal (vanadium) is used
  • - Cycle life is theoretically unlimited
  • - Can maintain ready state for long periods of time
  • - Can be charged and discharged at same time
  • - Non-flammable

As a result, VRFBs can be used in a variety of energy storage applications such as peak-shaving, load leveling, microgrids, wind and solar, off-grid power supplies, and uninterruptible power supplies.


VRFBs are getting more attention from utilities companies, and large battery projects have already been announced.

The most notable vanadium-flow battery is probably a 200 MW system being built on the Dalian peninsula in China, which will serve 7 million residents. Costing $500 million, it’ll be used to peak-shave approximately 8% of Dalian’s expected load by 2020. This battery system will be the world’s largest, and it will single-handedly triple China’s grid-connected battery storage capacity.

According to Chinese firm Azure International, the market projection for VRFB demand (by MW) in the top 10 countries is growing at an 80% CAGR from 2013 to 2020, ultimately culminating in more than 7,000 MW of vanadium-flow capacity needed in 2020.

This demand could be even more substantial than that if the price of vanadium electrolyte could be reduced – it makes up about 30-50% of the cost of each battery alone.


Write a comment

Likes | 1
Dislikes | 0
Name: Jeff Desjardins
Canada Symbol:
Germany Symbol / WKN:
Shares Issued & Outstanding:

Anmeldung zum Newsletter:

Newsletter deutsch:
Newsletter englisch:
Sie erhalten nach der Anmeldung eine E-Mail mit einem Bestätigungslink. Erst nach Erfolgreicher Bestätigung sind Sie für den Newsletter angemeldet.


english/german - german/english